Compressive Strength: Diamond was once thought to be the material most resistant to compression (the least compressible). It is the material that scientists use to create the greatest pressures when testing matter. However, the rare metal Osmium has recently been shown to be even less compressible (although it is not as hard as diamond). Diamond has a bulk modulus (reciprocal of compressibility) of 443 GigaPascals (GPa). The bulk modulus of the metal osmium has recently been found to be 476 GPa, about 7% greater than diamond. Diamond is a polymorph of
the element carbon. Graphite is another polymorph. The two share the same chemistry, carbon, but have very different structures and properties. Diamond is hard, Graphite is soft (the "lead" of a pencil). Diamond is an excellent electrical insulator, Graphite is a good conductor of electricity. Diamond is the ultimate abrasive, Graphite is a very good lubricant. Diamond is transparent, Graphite is opaque. Diamond crystallizes in the Isometric system and graphite crystallizes in the hexagonal system. Somewhat of a surprise is that at surface temperatures and pressures, Graphite is the stable form of carbon. In fact, all diamonds at or near the surface of the Earth are currently undergoing a transformation into Graphite. This reaction, fortunately, is extremely slow.
the element carbon. Graphite is another polymorph. The two share the same chemistry, carbon, but have very different structures and properties. Diamond is hard, Graphite is soft (the "lead" of a pencil). Diamond is an excellent electrical insulator, Graphite is a good conductor of electricity. Diamond is the ultimate abrasive, Graphite is a very good lubricant. Diamond is transparent, Graphite is opaque. Diamond crystallizes in the Isometric system and graphite crystallizes in the hexagonal system. Somewhat of a surprise is that at surface temperatures and pressures, Graphite is the stable form of carbon. In fact, all diamonds at or near the surface of the Earth are currently undergoing a transformation into Graphite. This reaction, fortunately, is extremely slow.
No comments:
Post a Comment